ASX ANNOUNCEMENT

ASX Codes: PUA

9 June 2023

Earaheedy Drilling Results Identify New Horizon

Highlights

- Drilling program at Earaheedy Project completed during Q1, 2023 utilising Exploration Incentive Scheme grant of \$132,000
- Two diamond holes tested VTEM anomalies:
 - Diamond hole EHD001 drilled an EM target east of the known mineralisation envelope and returned intercepts including 5.2m at 0.25% Cu from 52.8m (including 2.2m at 0.34% Cu) and 7m at 0.11% Cu from 116m (including 0.5m at 0.53% Cu); and
 - Diamond hole EHD002, which was drilled 1.3km west of known mineralisation, returned several gold intercepts including 1m at 0.73 g/t Au from 246m in addition to copper intercepts such as 2m at 0.11% Cu from 190m
- RC hole EHRC004, which was drilled to follow up Peak's 2021 intersection of 3m at 1.5% Cu, intersected 2m at 0.11% Cu from 118m and ended in 5m of mafic volcanics
- Anomalous Au, As, Cu, Zn, Ni and Pb intercepts were identified in completed holes as well as the presence of mafic rocks indicating evidence of a potential VMS system

Peak Minerals Limited (ASX: **PUA**) (**Peak** or the **Company**) is pleased to provide the results from its co-funded drilling program at its 100% owned Earaheedy Project, located 28km southeast of Sandfire Resources Ltd's (ASX: SFR) DeGrussa Copper Gold Mine, within the Murchison province of Western Australia.

The program, which utilised the \$132,000 grant awarded to the Company under the Western Australian Government's Exploration Incentive Scheme (**EIS**), was completed during Q1, 2023. The two diamond holes were drilled to test mineralisation models, faults and stratigraphy. Understanding the stratigraphy, mineralisation relationships and alteration at Earaheedy are pivotal to unlocking value and moving the project forward. The program was also designed to provide further understanding on faults (potential fluid conduits) and the elevated copper, nickel, cobalt, zinc, lead and sulphur values in an extensive (1.1km x 2.0km) blanket.

The first diamond drill hole, EHD001, targeted a versatile time domain electromagnetic (**VTEM**) anomaly identified from recent geophysical processing, proximal to the previously identified copper blanket and testing

the depth to basement and mineralisation potential proximal to faults. The hole hit multiple zones of low-grade mineralisation and intercepted **7m at 0.11% Cu** from 116m and **5.2m at 0.25% Cu** from 52.8m.

The results from EHD001 indicate that detected conductivity was the result of lithological and chemical changes in the rock below 220m depth. Positions of faults were confirmed; the orientations are mainly NW-SE (steeply dipping ~80°). Bedding has a shallow dip (~30°) to the NNW as expected. It is interpreted that turbiditic dolostones of the Doolgunna Fm were intercepted below Earaheedy basin sediments, though not the expected basement rocks; it does answer the question of depth of the basin at this western extent of Earaheedy.

The second diamond hole, EHD002, was drilled distal to known mineralisation, targeted conductivity at depth, and a major stratigraphic contact. The hole's target area was also a target to previous explorers, where elevated cobalt and magnetics profile made the area highly prospective.

Copper mineralisation was lower than expected from initial visual estimates where chalcopyrite, malachite and strong alteration were seen. The highest intercepts, at the contact of siltstones and dolostones below, was **1m** at **0.15% Cu** from 159m, **2m at 0.11% Cu** from 190m, **2m at 0.11% Cu** from 205m and **1m at 0.11% Cu** from 249m. Several 1m intercepts of gold were also drilled including **1m at 0.73 g/t Au** from 246m, **1m at 0.63 g/t Au** from 359m and **1m at 0.60 g/t Au** from 419m.

Most of the gold intercepts appear to be related to a separate event and were unexpected within small quartz carbonate veins. Indicator elements suggest this hole is away from the source of the copper mineralisation, however, gold at these levels has not been drilled previously at Earaheedy. Bedding has a shallow dip (~5-30°) to the NNW but shifts to a westerly dip direction below the Johnson Cairn siltstones. Fault orientations are mainly NW-SE (dipping ~50°). Evidence of folding was more evident in this hole; dolostones in the footwall were turbiditic and complex.

The reverse circulation (**RC**) hole (EHRC004) was following up on the 2021 intersection of **3m at 1.5% Cu**¹ from 86m, which ended in mineralisation. The hole ended in **5m at 0.09% Cu**, including **2m at 0.11% Cu** within mafic rocks.

Dolerites or basalts have never been intersected at Earaheedy and defining the position of these was an aim of this program. This area has no interesting geophysical anomalism that would indicate mineralisation but suggests it's within a broad fault zone. A recent geochemical review suggested that there are strong targets to the SW of the weak copper mineralisation.

¹ Refer ASX release dated 2 December 2021 for further information.

Figure 1. Overview Map with interpreted geology adjusted based on recent drilling. Sections A-A' and B-B' are referred to in Figures 2 and 3.

Figure 2. Sections A-A' showing geological interpretation based on logging and plan map in Figure 1.

Figure 3. Section B-B' showing interpreted geological section.

Figure 4. Copper as chalcopyrite in EHD001 as infill and replacement at 116.7m (left) and along fractures in EHD002 commonly as malachite and chrysocolla at 159.2m.

Figure 5. RC Chips from EHRC004, the last 5m are in mafic volcanics with low grade Cu mineralisation.

This announcement is authorised by the Board of Peak Minerals Limited.

For further information please contact:

Jennifer Neild

Chief Executive Officer Peak Minerals Limited Tel: +61 8 6143 6748

Competent Person Statement

The information in this announcement that relates to new exploration results is based on information compiled by Ms Jennifer Neild, who is a Member of the Australian Institute of Geoscientists. Ms Neild is employed by Peak Minerals Limited. Ms Neild has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Neild consents to the inclusion in this announcement of the matters based on her information in the form and context in which it appears.

This information in this announcement that relates to historical exploration results were reported by the Company in accordance with listing rule 5.7 on 2 December 2021 (*Copper Mineralisation Extends Across Earaheedy Project*). The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX A: Drill hole location details and significant intercepts

 Table 1. Hole locations at Earaheedy Project

HOLEID	EASTING	NORTHING	ELEVATION	DEPTH	AZIMUTH	DIP	TYPE
EHD001	762574	7161361	557	411	174	-69	DIAMOND
EHD002	759621	7161227	565	400	172	-68	DIAMOND
EHRC004	761779	7159913	560	127	359	-55	RC

Table 2. EHD001 Selected intercepts using weighted average grade >0.1% Cu, >0.5g/t Au, >0.1% Pb. "BD" is below detection.

HOLEID	From	То	Interval	Au gpt	Cu %	Ni %	Pb %	S %
EHD001	5	6.4	1.4	0.010	0.038	0.004	0.178	0.045
EHD001	6.4	7.9	1.5	0.021	0.060	0.007	0.201	0.026
			2.9	0.016	0.049	0.006	0.189	0.035
EHD001	21	22	1	0.505	0.124	0.015	0.049	0.017
EHD001	52.8	54.2	1.4	0.022	0.207	0.019	0.004	0.027
EHD001	54.2	56.4	2.2	0.011	0.338	0.067	0.002	0.033
EHD001	56.4	57.1	0.7	0.006	0.105	0.011	BD	0.007
EHD001	57.1	58	0.9	0.0001	0.186	0.022	0.001	0.010
			5.2	0.011	0.245	0.039	0.002	0.024
EHD001	116	116.5	0.5	0.009	0.057	0.001	BD	0.215
EHD001	116.5	117	0.5	BD	0.531	0.001	X	0.693
EHD001	117	118	1	0.009	0.089	0.001	X	0.212
EHD001	118	119	1	BD	0.071	0.000	X	0.254
EHD001	119	120	1	BD	0.042	0.000	X	0.301
EHD001	120	121	1	BD	0.083	0.000	X	0.181
EHD001	121	122	1	BD	0.056	0.000	X	0.206
EHD001	122	123	1	BD	0.098	0.001	X	0.170
			7	BD	0.105	0.000	X	0.254
EHD001	165	166	1	BD	0.119	0.001	0.005	0.243
EHD001	198	199	1	BD	0.140	0.001	X	0.357
EHD001	236	237	1	BD	0.171	0.001	Х	0.217

Table 3. EHD002 Selected intercepts using weighted average grade >0	0.1% Cu, >0.5g/t Au, >0.1% Pb.	"BD" is below detection.
---	--------------------------------	--------------------------

HOLEID	From	То	Interval	Au gpt	Cu %	Ni %	Pb %	S %
EHD002	158	159	1	0.014	0.037	0.016	BD	0.010
EHD002	159	160	1	0.026	0.146	0.017	BD	0.036
			2	0.020	0.091	0.016	BD	0.023
EHD002	190	191	1	0.008	0.093	0.016	BD	0.025
EHD002	191	192	1	0.006	0.134	0.016	BD	0.038
			2	0.007	0.113	0.016	BD	0.032
EHD002	205	206	1	0.016	0.086	0.015	BD	0.024
EHD002	206	207	1	0.001	0.124	0.015	BD	0.034
			2	0.008	0.105	0.015	BD	0.029
EHD002	246	247	1	0.726	0.001	0.015	BD	BD
EHD002	249	250	1	0.006	0.108	0.016	BD	0.030
EHD002	419	420	1	0.599	BD	BD	BD	0.012
EHD002	359	360	1	0.628	0.0002	0.0003	BD	0.099

 Table 4. EHRC004 Selected Intercepts using weighted average grade >0.1% Cu, >0.5g/t Au and >0.1% Pb.

HOLEID	From	То	Interval	Au gpt	Cu %	Ni %	Pb %	S %
EHD004	115	116	1	0.001	0.101	0.017	0.004	0.035
EHD004	116	117	1	0.014	0.056	0.014	0.003	0.046
EHD004	117	118	1	0.001	0.090	0.016	0.006	0.056
EHD004	118	119	1	0.009	0.122	0.023	0.007	0.050
EHD004	119	120	1	0.001	0.101	0.021	0.005	0.056
			5	0.005	0.094	0.018	0.005	0.049

APPENDIX B: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling	RC and diamond intervals were systematically sampled using standard 1m samples. Some intervals were less or more than 1m at geological contacts and prospective veining. Other unusual intervals were the result of poor diamond core recoveries.
	sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities	 All RC samples were collected using industry standard practices, where 2-3kg samples were collected by spear from the drill piles. All care was taken to ensure a representative sample of each metre. Diamond core is half cut along downhole orientation lines. Half core is sent to the laboratory for analysis and the other half is retained for future reference. <u>Samples were sent for lab analysis</u>. The speared 2-3kg samples were collected in labelled calico bags and grouped in 10 samples polyweave bags. Half core is sent to the laboratory for analysis and the other half is retained for future reference. For RC and diamond core (both HQ and NQ2). Samples less than 3kg are crushed to 2mm, dried and then pulverised. The samples were prepared at the laboratory with a 0.25g sample prepared for the (4) acid multi-element digest and ICP-OES finish. These elements are: Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, S, Sb, Sc, Sn, Sr, Te, Ta, Tl, W, Zn and Zr. The sample is digested with, hydrochloric, acid to effect a total dissolution of the sample. The sample is then analysed using ICP-OES. For gold analysis 25g lead charge also an ICP-OES finish.
	or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	

	Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	The Sandvik multi-purpose drill rig is capable of mud-rotary drilling, reverse circulation and diamond by changing the drill head. Due to ground conditions encountered in Hole EHD001, the collar of EHD002 was drilled using RC drilling down through the regolith to the point of refusal or to a level considered geologically significant to change to core. The hole was then continued using HQ diamond core until the drillers determined that a change to NQ2 coring was required. The core is oriented and marked by the drillers. The core is oriented using ACT Mk II electric core orientation.
	Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature	For RC sample recovery was assessed qualitatively with sample moisture, bulk recovery and quality recorded for each sample. Samples were collected from 1m piles and speared directly into calico sample bags. Where possible, samples were collected dry and care was taken for a representative sample of the material. On diamond core, a line was drawn arbitrarily by a field technician to guide core cutting.
IJ,		of the samples Whether a relationship exists between simple recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	It appears that copper mineralisation is most prevalent in vuggy limestones and iron rich terra rosa unit. The poor recovery resulted in a loss of material and less fine material.
	Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were geologically logged in their entirety and of a quality sufficient for inclusion in a mineral resource estimation.
		Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is both qualitative and quantitative in nature and captures the downhole depth, colour, lithology, texture, alteration, mineralisation, and other features of the samples where present.
		The total length and percentage of the relevant intersections logged.	All drill holes were logged in their entirety.
	Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond core (both HQ and NQ2) is half-core sampled to geological boundaries. Due to core loss in EHD001 several samples were taken over larger intervals than is standard (up to 4.1m). Samples less than 3kg are crushed to 10mm, dried and then pulverised to 75µm. Samples greater than 3kg are first crushed to 10mm then finely crushed to 2mm and input into the rotary splitters to produce a consistent output weight for pulverisation.

		PEAK MINERALS
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Samples were collected every metre directly off the rig-mounted cyclone into a calico sample bag. The 1m samples that are not anomalous based on pXRF analysis are securely stored if needed. The cyclone was cleaned regularly. A majority of the samples were dry. 4m composite samples were collected from the centre of the 1m pile by a spear.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Intertek-Genalysis Laboratory undertook oven drying of up to 3kg of sample than crushed. Secondary crushing riffle splitting obtaining a ~2mm subsample for pulverisation.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	QAQC reference samples and duplicates were routinely submitted with each sample batch. Additionally, the QAQC from the laboratory was also collected.
	Measures taken to ensure that the sampling is representative of the <i>in-situ</i> material collected, including for instance results for field duplicate/second- half sampling.	Duplicate samples were routinely submitted every 25 samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes taken are appropriate relative to the style of mineralisation and analytical methods undertaken.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples were sent to Intertek Genalysis laboratory for multi-element analysis (4 Acid digestion with ICP-MS and ICP-OES finish) and Au analysis (25g lead fire assay with ICP-OES finish). This method is appropriate for characterisation of lithogeochemistry. All samples that exceeded the upper limit of detection were analysed for Ore Grade Cu by 4 acid digestion with an ICP finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Analysis using the Olympus Vanta handheld XRF was helpful for differentiating lithology type in some cases, but not reported. Reading times were 3 readings 15s, 15s and 10s. Standards and blanks were used that were compatible with the XRF tool and values were monitored.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	For all sampling, CRMs were utilised every 20 samples. Duplicates were collected every 25 samples. In addition, QAQC data from the lab is also collected. Review of standards and duplicates suggests adequate.

		acceptable levels of accuracy (ie lack of bias) and precision	
\geq		have been established.	
	Verification of sampling and	The verification of significant	Significant results are considered to be: >0.1% Cu, >0.1% Ni, >0.10% Zn, >0.1%Pb and >0.5g/t Au.
	assaying	intersections by either	
\square		independent or	
\subseteq)	alternative company	
		personnel.	
		The use of twinned	RC hole EHRC004 was drilled to twin an air core drilled in 2021. The hole came up with similar geology uptil the last 5m
))	Documentation of	Data was capture in field books and put into digital spreadsheets. Data was checked
		primary data, data	and verified. Digital files were imported into the PUA electronic database. All physical
277)	entry procedures, data	sampling sheets are filed and scanned electronically.
$\mathcal{Y}_{\mathfrak{l}}$	<i>y</i>	verification, data	
	2	storage (physical and	
))	electronic) protocols.	
		Discuss any	No adjustments were made to the assay data.
		data.	
	Location of	Accuracy and quality of	The location of all collars was by handheld GPS that is accurate to within ±5m.
	data points	surveys used to locate	Downhole surveys were completed by a gyro.
772	J)	drill holes (collar and	
		down-hole surveys),	
		trencnes, mine	
		locations used in	
\square)	Mineral Resource	
	<u> </u>	estimation.	
10		Specification of the	All collars quoted in this Report are using the GDA1994 MGA, Zone 50 coordinate
$\left(\right) \right)$))	grid system used.	system.
$\frac{1}{7}$		Quality and adequacy	l'opography based on publiciy available data.
	Data spacing	Data spacing for	The data spacing is not appropriate for a Mineral Resource or Ore Reserve estimation.
24	and	reporting of	Samples were collected to test for mineralisation.
9L	distribution	Exploration Results.	
\geq		Whether the data	The aim of the drill program was to test geophysical targets identified from VTEM and
\square		spacing and	geochemical anomalies.
		distribution is sufficient	
		of geological and grade	
5		continuity appropriate	
		for the Mineral	
\square)	Resource and Ore	
	<i>Ŋ</i>	Reserve estimation	
\sim	~	procedure(s) and	
		classifications applied.	No comple compositing has been applied to the surely action accord.
		compositing has been	NO Sample compositing has been applied to the exploration results.
		applied	
L		applica.	

	Orientation of	Whether the	The drill program was completed to test geophysical targets however testing
	data in relation	orientation of campling	stratigraphy depth to becoment and positions and orientations of faults were
			stratigraphy, deput to basement and positions and orientations of faults were
	to geological	achieves unbiased	secondary goals.
	structure	sampling of possible	
		structures and the	
		extent to which this is	
		known, considering the	
		deposit type.	
		If the relationship	No orientation sampling bias has been identified
		between the drilling	····
))	orientation and the	
		orientation of key	
		minoralised structures	
11		is considered to have	
JL	<i>l</i>	Introduced a sampling	
~		bias, this should be	
211		assessed and reported	
\mathcal{Y}_{I}	<u>)</u>	if material.	
	Sample	The measures taken to	Samples were transported from the field directly to the assay laboratory in Perth.
	security	ensure sample security.	
	And		
	Audits or	The results of any	Apart from desktop reviews of the historic surface and drill data, no audits have been
	reviews	audits or reviews of	undertaken.
		sampling techniques	
ar	2	and data.	
	ノ <u></u>		

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Peak Minerals Limited has acquired 100% of Greenrock Metals Pty Ltd and thus 100% of E52/3751. E52/3751 is a granted tenement and is in full force. A 1% NSR is payable for all minerals sold.
5	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments exist with respect to the exploration or development of the tenement.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 1969-1972: Near surface copper mineralisation identified by Western Mining Corporation. Vacuum and percussion drilling intersected significant copper anomalism. 1982: Esso Exploration explored the Glengarry basin for stratiform lead-zinc and copper. Esso completed broad gravity over the current tenure. 1987-1995 - CRAE independently explored the area and recognised a copper anomaly at Cork Tree through regional lag sampling. Follow up auger, RAB and diamond drilling was completed. 2003-2012: Giralia Resources NL explored the area with Mt Isa Mines farming into the project in 2002-2003. A three line IP survey (MIMDAS) was completed over the Cork Tree Prospect and rock chip samples were collected. 2008-2011: PacMag Ltd joined the JV and completed reconnaissance XRF sampling. In 2011 PacMag withdrew from the joint venture and Giralia was taken over by Atlas Iron. 2012-2020: Kalamazoo Resources Limited completed soil sampling, a MLTEM survey, 2 RC holes and a heritage survey over the areas drilled.
Geology	Deposit type, geological setting and style of mineralisation.	Cork Tree has been explored previously for gold and base metals mineralisation associated with long lived and reactivated basin forming structures that were considered capable of being the fluid conduits promoting epigenetic or syngenetic mineralisation. Early ideas combine the structural setting with the prospective lithostratigraphy identifying potential for sediment hosted mineralisation. Recent concepts have modified the focus to being a largely epigenetic style. Syngenetic sedimentary exhalative (SEDEX) style models are applicable to this area. In such a system, a distal mineralising fluid travels along a suitable fault plumbing system until it reaches the surface where it exhales into a low energy environment where it can be preserved as a stratiform deposit. The importance of structures in channelling groundwater during late compression phase of a basin have been more recently recognised as a significant aspect towards controlling mineralisation. Mineralisation is deposited in structural traps within reverse faults and thrusts, especially within a favourable reactive lithological host so that again, mineralisation is stratabound.

Γ	Drill hole	A summary of all	All drill hole locations are described in the tables above, in the body of the text and
	Information	information material to	on related figures.
-		the understanding of the	C C C C C C C C C C C C C C C C C C C
\geq		exploration results	-Easting and Northing are given in MGA GDA94 zone 50.
		including a tabulation of	-The RL is in metres, AHD
		the following	-Dip is in inclination of the holes from horizontal and azimuth is reported in magnetic
		information for all	degrees.
		Material drill holes:	-Downhole length is the distanced measured along the drill hole trace for an intercept
_		 easting and 	and the depth of intercept is the thickness with a weighted average >0.1% copper,
		northing of the	>0.1% lead and 0.5 g/t gold.
_		drill hole collar	- The hole length is measured from surface to the end of the hole measured along
		 elevation or RL 	the hole trace.
		(Reduced Level –	
714		elevation above	
		sea level in	
		metres) of the	
11		drill hole collar	
リ		- dip and azimuth	
		of the hole	
		- down hole	
		length and	
		interception	
		depth	
		- hole length.	
71		If the exclusion of this	No information material to the understanding of the exploration results has been
\mathcal{V}_{i}		on the basis that the	excluded.
		information is not	
		Material and this	
		exclusion does not	
		detract from the	
		understanding of the	
		report, the Competent	
1		Person should clearly	
]]]		explain why this is the	
		case.	
	Data aggregation	In reporting Exploration	Significant intersections are determined using both qualitative (i.e., geological
-14	methods	Results, weighting	logging) and quantitative (i.e., lower cut-off) methods. No high grade cut-offs were
		averaging techniques,	used. The nominal weighted average lower cut-off for copper is 0.1% Cu, 0.1% for
14		maximum and/or	Ni, 0.1%Pb, 0.1% Zn and 0.5gpt Au in this report.
\sim		minimum grade	
		truncations (eg cutting of	
		high grades) and cut-off	
		grades are usually	
		Material and should be	
		Stated.	The bishest and high and subbide on Autistantic interval to busy 1
		vvnere aggregate	The highest grade high-grade sulphide or Au intervals internal to broader zones of
		short longths of bigh	suprise inneralisation are reported as included intervals. For example, 5.2m at 0.25% Cu and 0.5m at 0.52% Cu
		grade results and longer	0.2370 Cu anu 0.3111 at 0.3370 Cu.
		lengths of low grade	
		results the procedure	
		used for such	
		aggregation should be	
		stated and some typical	
		examples of such	

		aggregations should be shown in detail.	
\geq			
		The assumptions used	No metal equivalence data are reported.
\leq)	nor any reporting of metal equivalent values	
		should be clearly stated.	
74	Relationship	These relationships are	Assay intersections are reported as down hole lengths. At this time the widths of
	between	particularly important in	mineralisation have not yet been determined.
	mineralisation	the reporting of	
11	intercept lengths	If the geometry of the	The geometry of the mineralisation appears to be mainly horizontal and related to
シロ		mineralisation with	the terra rosa unit, the iron-rich clayey material in the karstic zones. Blebby or
	2	respect to the drill hole	replacement copper as chalcopyrite is <2%
	2	angle is known, its	
		nature snould be reported	
		If it is not known and	All intervals are reported as down hole length, true width of mineralisation is not yet
	1	only the down hole	known.
))	lengths are reported,	
10	2	there should be a clear	
		statement to this effect	
_		true width not known').	
	Diagrams	Appropriate maps and	Relevant maps and diagrams have been included in the body of this report. Cross-
)	sections (with scales) and	sections have been shown in 3x vertical exaggeration in order understand the
		tabulations of intercepts	magnitude of difference between the diamond holes and air core holes.
$\int \int$))	any significant discovery	
		being reported These	
		should include, but not	
74)	be limited to a plan view	
JL	IJ.		
		appropriate sectional	
))	views.	
	Balanced	Where comprehensive	All results, greater than 0.1% copper, 0.1% nickel, 0.1% zinc, 0.1% lead and 0.5gpt
	reporting	reporting of all Exploration Results is not	gold are included in this report. Some dilution is possible or probable in the last 1m interval of EHECOOM where the hole intersected water. The sample had lower conper-
		practicable,	than the samples above and mineralisation within the fines may have been washed
		representative reporting	away.
))	of both low and high	
		grades and/or widths	
1		avoid misleading	
		reporting of Exploration	
		Results.	

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	All other relevant data has been included within this report. However, ground conditions within the karstic limestones EHD001 are particularly poor. This is cause of subsurface vo
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially	The geochemical results from this program indicate that a V source of the widespread low-grade, epigenetic copper mine fully conclusive. The mafic rocks interested in EHRC004 hav the vicinity and is a piece of evidence that suggests that VI are possible. A schematic geological interpretation has been provided bu as more data becomes available.
	Sensitive.	

nd conditions within the karstic limestones in the top 50-60m of rticularly poor. This is cause of subsurface voids.

al results from this program indicate that a VMS system is a possible despread low-grade, epigenetic copper mineralisation though it is not The mafic rocks interested in EHRC004 have not been found within is a piece of evidence that suggests that VMS mineralisation styles

ological interpretation has been provided but will be further refined comes available.